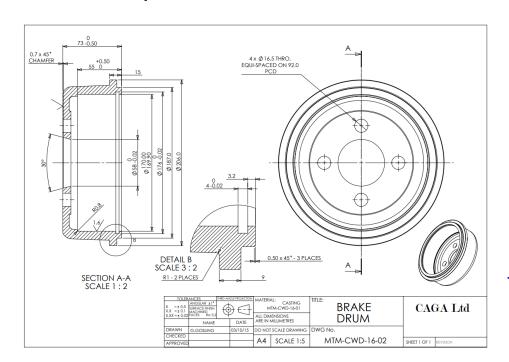
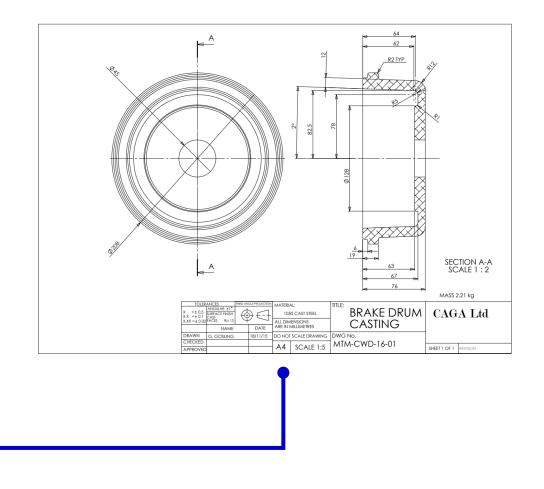


# MANUFACTURING TECHNOLOGY AND MANAGEMENT

**CONTINUOUS AUTOMATED** 


**PRODUCTION OF** 


A STEEL BRAKE DRUM

Group 7 - Leonna Aranda, Max Bruneau, Chris Hayes, Oliver Telfer 04/03/2025

# **Objective**

- Continuous production
- 240 finished brake drums per day
- Include automation
- Design factory layout
- Machined surfaces are protected from accidental damage





Imperial College London 2 17/03/2025

#### **Overview**

#### **Manufacturing Method**

- Machinery
- Machining Steps
- Tooling Selection

#### **Part Handling**

- Automation
- Work Holding
- Part Loading
- Part Storage
- Metrology
- Work Centre Layout

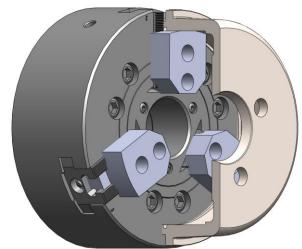
#### Costing

- Finite Capacity Plan
- Processing Costs
- Materials and Tooling
- Final Cost

Imperial College London 3

# **Overview - Who did What?**

| Task                                          | Name            |
|-----------------------------------------------|-----------------|
| Manufacturing method                          | Leonna + Oliver |
| Work holding & part handling (part packaging) | Chris + Leonna  |
| Cutter tooling                                | Max + Leonna    |
| CAM programs and CNC setting sheets           | Max             |
| Metrology equipment and process               | Chris           |
| Factory model & Part Costing (only non-ME3)   | Chris + Oliver  |


# **Manufacturing Method Machinery**

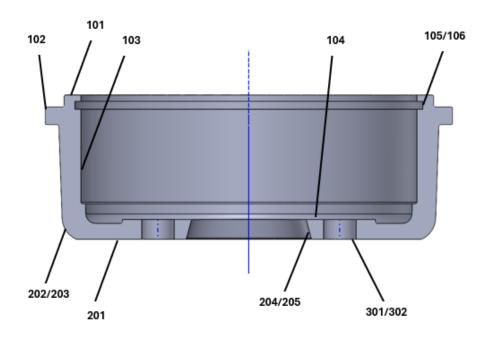
#### The Haas DS-30Y:

- Dual Spindle:
  - Primary Spindle 254mm chuck
  - Secondary Spindle 210mm chuck
    - Synchronised
- Compatibility with automation
  - Automatic Door
  - Robots
  - Hydraulic Chucks
- 12-station BMT65 turret
- C-axis Indexing
- Coolant








Imperial College London 5

# **Machining Steps**

Primary Spindle - Hold from the inside Ø 45mm

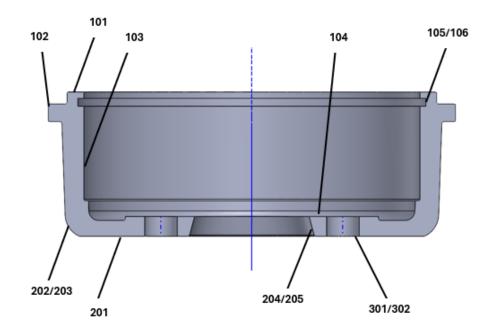
Secondary Spindle – Hold from the inner diameter

**Total Run Time: 5.98 minutes** 



#### **Bill of Materials**

| Part No. | Part Description           | Unit of measure | Quantity |
|----------|----------------------------|-----------------|----------|
| BRDR 001 | 1050 Cast Steel<br>Casting | each            | 1        |

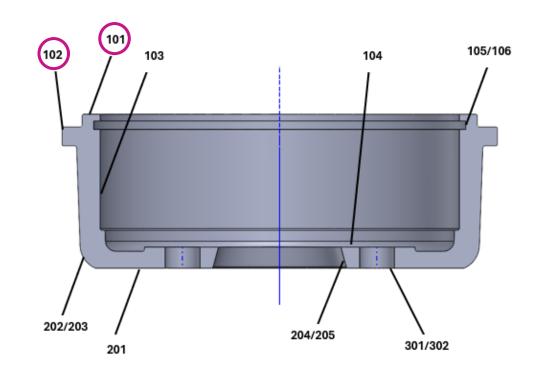

Imperial College London 6 17/03/2025

# **Machining Steps**

Primary Spindle - Hold from the inside Ø 45mm

Secondary Spindle – Hold from the inner diameter

**Total Run Time: 5.98 minutes** 



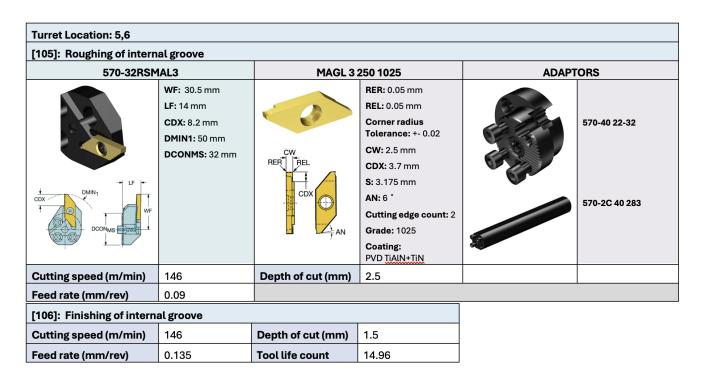

|         |           |             |           |            |           | 1                               |                       |                  |  |
|---------|-----------|-------------|-----------|------------|-----------|---------------------------------|-----------------------|------------------|--|
| Part Nu |           |             | BRDF      |            | _         | Machine Tool                    | HAAS DS-30Y           |                  |  |
| Descrip |           | DF          |           | E - GROUP  | 7         | Tool holder                     |                       | 12 Station BMT65 |  |
|         | on No.    |             | 10        | _          |           | Program No.                     | 1                     |                  |  |
|         | l & grade |             | 1050 CAS  |            |           | Prepared by                     | MAX B                 |                  |  |
| Section | & Size    |             | ROUNE     | Ø208       |           | Date                            | 16/02/2025            |                  |  |
| Vork H  | olding    | Main        | 3         | Jaw Chuck  |           | Matl. Loading                   | Automatic - Robotic   | Arm              |  |
| Vork H  |           | Sub         |           | Jaw Chuck  |           | riata Lodding                   | /tatorilatic Hobotic  | 74111            |  |
|         |           |             |           |            |           |                                 |                       |                  |  |
|         | T         | urning Too  | ls        |            |           |                                 |                       |                  |  |
| Tool#   | Gene      | eric Descri | iption    | Matl       | RH/LH     | Tool code                       | Insert No.            | Tool<br>Location |  |
| 1       | Pr        | obe (WIPS   | 3-L)      |            |           |                                 |                       | 1                |  |
| 2       | EXTERN    | NAL TURN    | & FACE    | Carbide    | RH        | DCLNR 2525M 16                  | CNMG 16 06 08-PR 4425 | 2                |  |
| 3       | INT       | ERNAL BO    | ORE       | Carbide    | RH        | C5-TR-V13UBR-35060C1            | TR-VB1308-F 4415      | 3                |  |
| 4       | INTERI    | NAL FACE    | FINISH    | Carbide    | RH        | PSKNR 2525M 15                  | SNMG 15 06 24-PR 4425 | 4                |  |
| 5       | INTERN    | AL GROO     | VE CUT    | Carbide    | RH        | 570-32RSMAL3                    | MAGL 3 250 1025       | 5,6              |  |
| 6       | EX        | TERNAL FA   | ACE.      | Carbide    | LH        | DSSNL 2020K 12                  | SNMG 12 04 16-PM 4425 | 7                |  |
| 7       | EX        | TERNAL TU   | JRN       | Carbide    | LH        | DCLNL 2525M 16                  | CNMG 16 06 08-PR 4425 | 8                |  |
| 8       | INT       | ERNAL BO    | DRE       | Carbide    | LH        | A25T-SSKCL 12                   | SCMT 12 04 12-PR 4425 | 9                |  |
|         | Millin    | ng/Drilling | Tools     |            |           |                                 |                       |                  |  |
|         |           | eric Descri |           | Matl       | Dia.      | Exposed Length                  | Fixed/Live            | Tool             |  |
|         | Ocin      | SHC Descri  | iption    | Piett      | Dia.      | Exposed Length                  | Axial/Radial          | Location         |  |
| 9       | С         | ENTER DR    | ILL       | HSS        | 5         |                                 | AXIAL/ LIVE           | 10               |  |
| 10      |           | DRILL       |           | HSS        | 16.5      | 53.56                           | AXIAL/ LIVE           | 11,12            |  |
|         |           |             |           |            |           |                                 |                       |                  |  |
|         | Set up dr | awing - sh  | now in wo | rking hold | ing inclu | ıding datum                     |                       |                  |  |
|         |           |             |           | 76         | _         | _                               |                       |                  |  |
|         |           |             |           | -          | -         | -                               | 13                    |                  |  |
|         |           | _           |           | _          |           |                                 |                       |                  |  |
|         |           |             |           |            |           | Г                               | <del> </del>          |                  |  |
|         |           | - 1         |           |            | _         |                                 |                       |                  |  |
|         |           | - 1         |           |            | 0.0       | 0,0                             | .                     |                  |  |
|         |           | +           |           | -51        | •••       | • • - • • • • • • • • • • • • • | J                     |                  |  |
|         |           | - 1         |           |            |           |                                 |                       |                  |  |
|         |           |             |           |            | _         |                                 |                       |                  |  |
|         |           |             |           |            | ┙         | L                               |                       |                  |  |
|         |           | L           |           | _          |           |                                 |                       |                  |  |
|         |           | L           | ain spi   |            |           |                                 | Sub spindle           |                  |  |

**Tooling Selection** 

[101] Facing Off[102] Finishing Off External Shoulder

| Turret Location: 2 |                       |                                                                         |  |  |  |  |
|--------------------|-----------------------|-------------------------------------------------------------------------|--|--|--|--|
| Tool Holder        | Tool Insert           |                                                                         |  |  |  |  |
| DCLNR 2525M 16     | CNMG 16 06 08-PR 4425 | 5                                                                       |  |  |  |  |
|                    | IC ORE LE -           | Angle: 80°  Corner Radius: 0.7938mm  Cutting edge count: 4  Grade: 4425 |  |  |  |  |




#### Justification:

Same tool was used for both processes to reduce lead times from tool changes and corner radius is sufficient for what is needed (R1 fillet)

# **Manufacturing Method Tooling Selection**

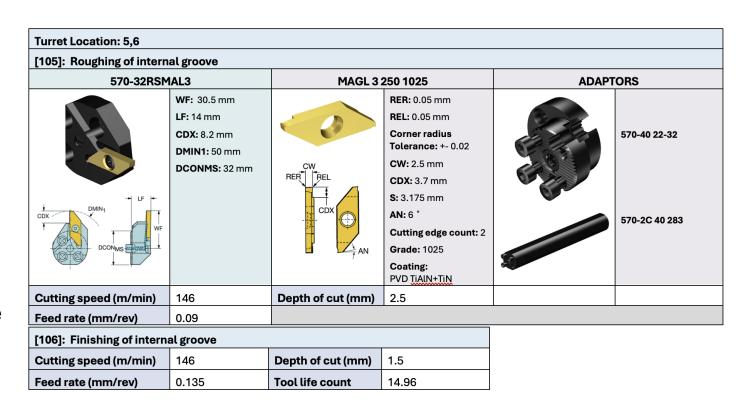
#### **Justification**

- Tooling selected with Sandvik CoroPlus tool guide
- Groove tool TiAIN and TiN coating
  - Corrosion resistance and Thermal Stability
  - Prevent built-up edge and attrition wear
    - Maintain surface quality and tool longevity
- Drill bit hardened steel and TiAIN coating
  - Harder than Casting material to prevent wear
- All other inserts carbide and use same coatings (TiCN+Al2O3+TiN)
  - Reduces diffusion or abrasion
- Skipping roughing
  - Suitable to finish off the surface due to short cut depths
  - Reduces run time and increases tool longevity



Titanium Nitride

|                                        |           | familiar gold colouring on drills.                                    |
|----------------------------------------|-----------|-----------------------------------------------------------------------|
| <u>Titanium</u><br><u>CarboNitride</u> | TiCN      | <ul><li>+ Abrasive wear</li><li>+ Adhesion between coatings</li></ul> |
| <u>Alumina</u>                         | $Al_2O_3$ | Good Thermal insulator + Diffusion/Crater wear                        |

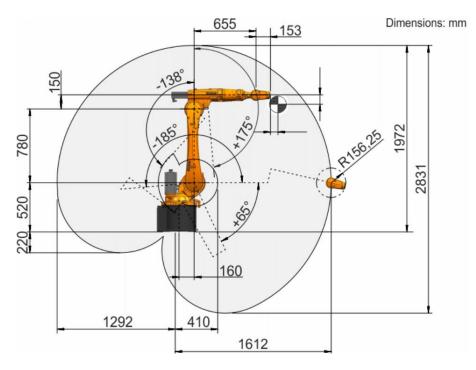

+ BUE/Attrition wear

# **Tooling Selection - Tool life**

- Individual cutting times found from SolidWorks
   CAM.
- Each tool was assumed to have a tool life of 15 minutes.

Tool life usage = 
$$\frac{24}{29.92}$$
 = 0.802 = 80.2%

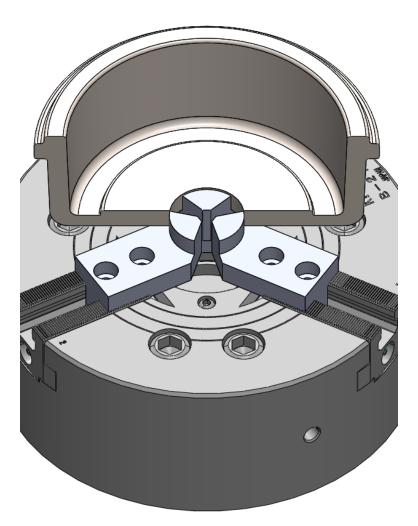
- For the Groove insert and Drilling steps, tool life counts were under the batch amount of 24 drums.
- 1 spare of each was placed in the tool turret's spare slots.

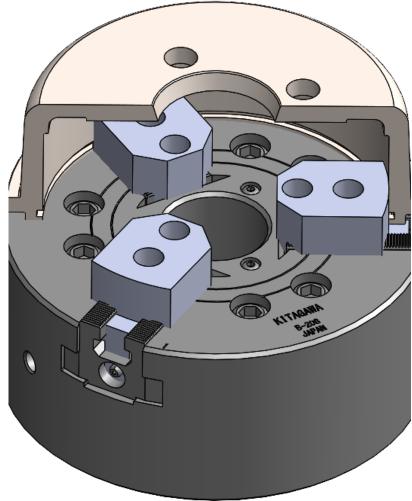



#### **Automation**

#### KUKA KR16 R1610:

- Articulated robot arm with 6 DOFs
- Rated payload of 16kg
- Large working envelope and maximum reach of 1.61m
- Synchronisation with machines
- Pick and place mechanism
  - Table grid pick up system
  - Finished part drop off dual table method
- Joint-type motion and cartesian motion

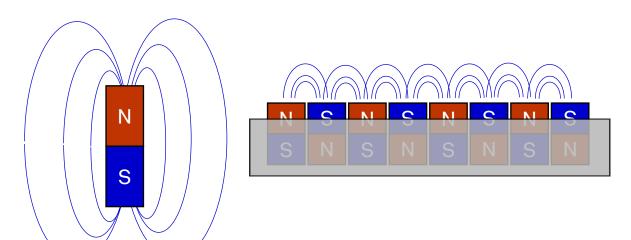


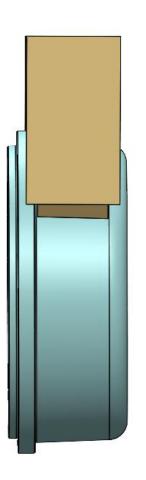



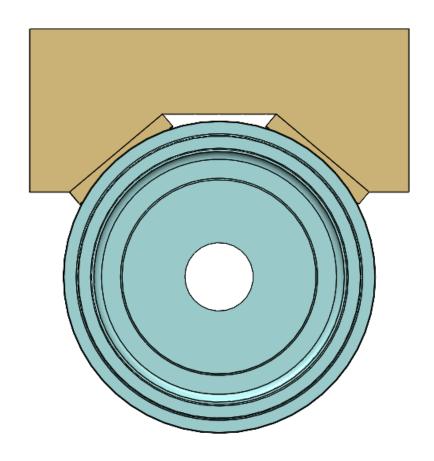

Imperial College London 17/03/2025

# **Work Holding**

- 3 jaw chucks for both the primary and secondary spindle.
- Hardened jaws for first step
- Improved contact area between jaws and the part
- Soft jaws for the second
- Can be machined down to repair surface





# **Part Loading**

#### **Custom Magnetic Clamp:**

- Holds the tapered outer diameter
- Enough 'leeway' to hold before and after machining
- Can pick up from any orientation
- Low pole size keeps the magnetic field highly localised





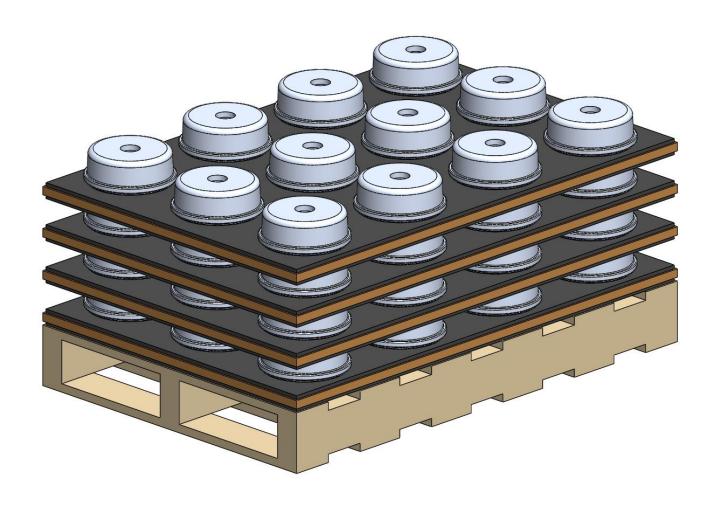


Imperial College London 17/03/2025

### Part Storage

- Stored on pallets
- Separated by thick panels of chipboard and rubber matting
- Comfortably holds 48 drums per pallet
- 10 pallets and 40 panels required

#### **Estimated Weight:**

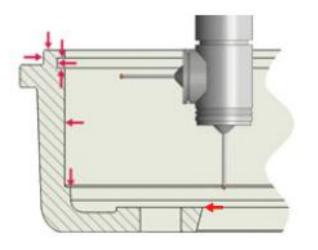

2kg per drum 3kg per divider

 $\rightarrow$  27kg per layer

20kg per pallet → 128kg Total **Estimated Cost:** 

£15 per pallet £110 per panel

 $\rightarrow$  £4,550 total cost




Imperial College London 14 17/03/2025

# **Metrology**

#### **Method and Measurement**

- Renishaw Equator 300 Gauging System with an Automatic Transfer System (ATS)
- Critical dimensions were determined based on tolerances and location
- Integrates with continuous production line



- Height
- Outer race diameter
- Groove location and dimensions
- Inner surface diameter + flatness
- Location of bottom shoulder
- Tapered hole minimum diameter



# **Metrology**

# **Procedure**

- CNC production "one off" defects unlikely
- Testing for catastrophic failure (unexpected tool damage)
- Full automation → check the whole part
- Utilise the machine → check every part



Imperial College London 16 17/03/2025

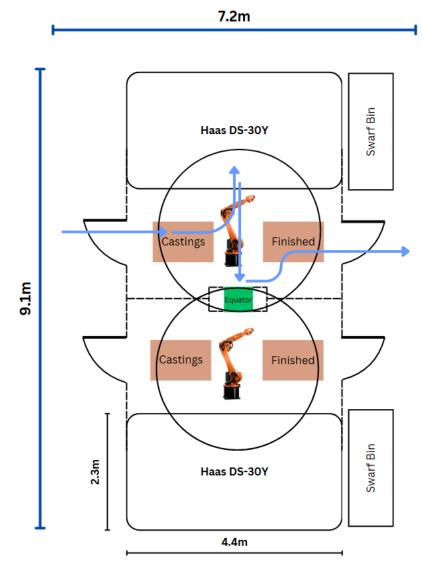
# **Metrology** Calibration

#### **Equator:**

- Calibrate the Equator off a "perfect part"
- Verify the perfect part with the factory's CMM
- Create new perfect part every 1,000 drums or so

#### **Turning Centre:**

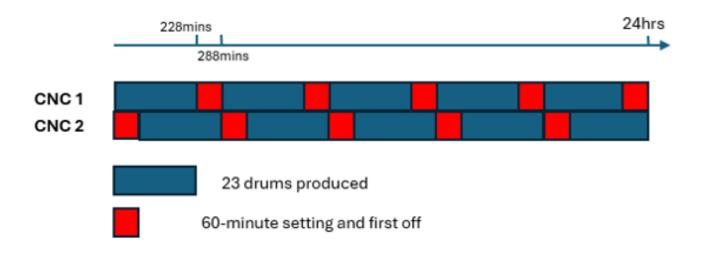
 Use a ball bar to calibrate the Turning Centre against localised wear every maintenance shutdown.

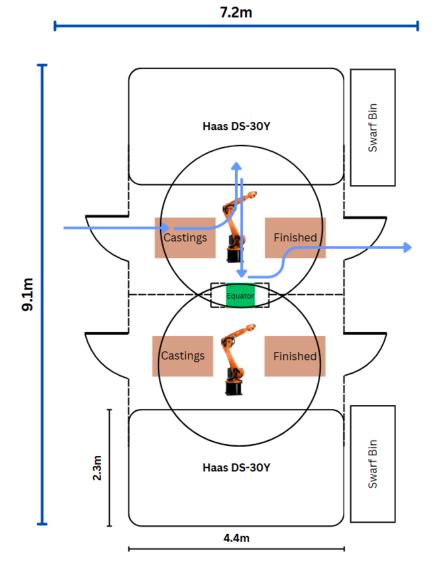





#### **Work Centre**

# **Layout and Production Path**


- Two CNC machines
- Two KUKA Robots
- Four total pallets Two for castings and two for finished
- Blue line indicates the process flow:
  - I. Pallet is wheeled into the manufacturing centre
  - II. Castings are loaded into the LH spindle by the robotic arm→ Turn step 1
  - III. Turning centre transfers the casting into RH spindle
    - → Turn step 2
  - IV. Robotic arm removes the casting from the RH spindle and loads into the Equator gauging system
    - → Tolerances and critical dimensions are checked
  - V. Robotic arm moves the part onto the second pallet




#### **Work Centre**

#### Shift Plan

- Tooling changed every 24 drums
- Pallets changed every 48 drums (2 tool changes)
- 60 minutes allocated for tool changing, first-off, and pallet changes





# **Costing**Finite Capacity Plan

#### **Production & Scheduling**

- The production line runs 24/7, except for 4 annual maintenance closures.
- Each turning centre performs 5 tool changes/day, each lasting 60 minutes.
- Two turning centres produce 240 drums/day, by maintaining a 12-minute MLT:

$$MLT = \frac{Setup\ time}{Batch\ size} + Run\ time + Transport\ time$$

$$MLT = \frac{60}{24} + 5.98 + 3.52 = 12$$

#### **Key Features:**

- 3.52-minute transport time allows flexibility for setup issues.
- Costing accounts for 361 operational days/year (excluding maintenance).

# **Manufacturing Costing Equation**

The cost per part was calculated by breaking down the manufacturing cost into 3 categories:

Materials

$$M_c = C_m \cdot V + \sum (C_p \cdot T) + \frac{C_t}{N}$$

Tooling

# **Manufacturing Costing Equation**

$$M_c = C_m \cdot V + \sum (C_p \cdot T) + \frac{C_t}{N}$$

### **Processing**

Processing costs are all calculated per hour and then multiplied by the manufacturing lead time to obtain the processing cost per part.

These costs include labour, depreciation, overheads, consumables and power

$$\sum C_p = C_l + C_d + C_o + C_c + C_{pow}$$

# **Manufacturing Costing Equation**

$$M_c = C_m \cdot V + \sum_{n} (C_p \cdot T) + \frac{C_t}{N}$$

### **Processing - Labour**

Assuming 1 unskilled worker attends to both machines for the whole period and a setter works 10 hours over a 24-hour period, labour cost per hour can be calculated:

$$C_{l1} = 15 + (25 \times 0.42) = £25.41$$

Labour costs over shutdown days:

$$C_{l2} = \frac{6 \times 4 \times 25}{361 \times 24} = £0.068$$

Final labour cost of:

$$C_l = 15_{operator} + 10.41_{setter} + 0.068_{servicing} = £25.478/hr$$

# **Manufacturing Costing Equation**

$$M_c = C_m \cdot V + \sum_{n} (C_p \cdot T) + \frac{C_t}{N}$$

### **Processing - Depreciation**

To calculate hourly costs due to depreciation, used the formula:

$$C_d = \frac{Cost \ of \ Replacement}{Service \ Life \ in \ Hours}$$

- Main depreciation costs came from the Haas DS-30Y, robotic arm and magnetic clamp.
- They together they cost £148,900 and must be replaced every 5-years.

$$C_d = 6.874_{Machinery} + 0.0514_{Storage} + 0.317_{Metrology} + 0.064_{Toolholders} + 0.05_{ChuckJaws} = £7.356$$

# **Manufacturing Costing Equation**

$$M_c = C_m \cdot V + \sum_{n} (C_p \cdot T) + \frac{C_t}{N}$$

### **Processing - Overheads**

- 1. Total production line footprint is  $64m^2$  and totaling £76,800 per year at a floor cost of £1200/ $m^2$ . Storage space for 480 drums adds a further £9,600 annually
- 2. Handling of unprocessed castings and finished brake drums to and from storage is estimated to cost £60 per day
- 3. A factory administrator and 2-person cleaning staff expected to have 1/5<sup>th</sup> of their day assigned to brake drum production is calculated to cost £88 per day
- 4. Additional annual charge of £3000 for the use of factory equipment

$$C_o = 9.14_{spaces} + 2.5_{handling} + 3.708_{administration \& cleaning} + 0.346_{hire} = £15.695/hr$$

# **Manufacturing Costing Equation**

# **Processing - Consumables and Power**

$$M_c = C_m \cdot V + \sum (C_p \cdot T) + \frac{C_t}{N}$$

#### **Consumables**

- Haas DS-30Y has 108L cooling tank, expecting to use 6 tanks worth of coolant
- Coolant cost £0.15/L to buy and £0.2/L to dispose
- Other general Consumables (paper, soap, cleaning materials, etc.): £0.02/hour

$$c_c = 0.056_{coolant} + 0.02_{other} = £0.076$$

#### **Power**

- Machines operate on a duty cycle of 0.25.
- Turning centre uses 15.4kW as well as the robotic arm 5.2kW.
- Assuming fixed electrical cost of £0.2/kWh

$$C_{pow} = £2.07$$

$$M_c = C_m \cdot V + \sum (C_p \cdot T) + \frac{C_t}{N}$$

### **Materials and Tooling**

Material cost,  $C_m \cdot V$  is simply the cost of the casting, **£6.15.** 

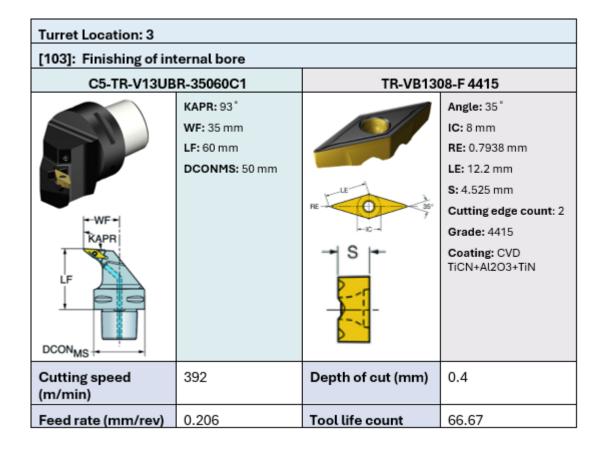
Tooling cost per part of each tool was calculated:

$$\frac{C_t}{N} = \frac{Cost \ of \ insert}{N. \ cutting \ edges} \times \frac{1}{N. \ parts \ produced}$$

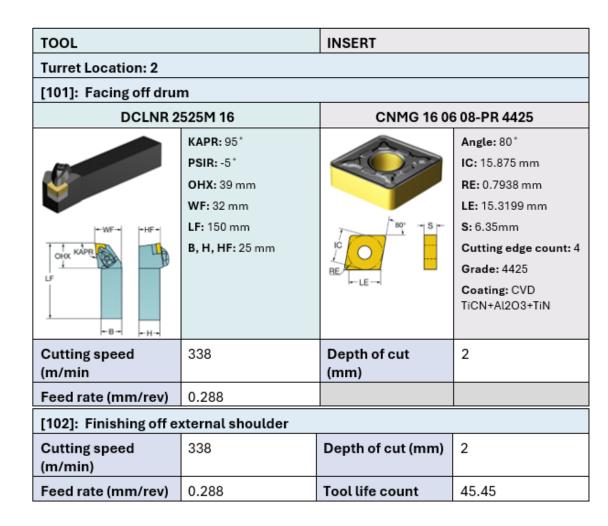
- An early tooling replacement strategy was employed to help minimise downtimes.
- The total tooling cost comes out to be £6.26 per part

### **Conclusion**

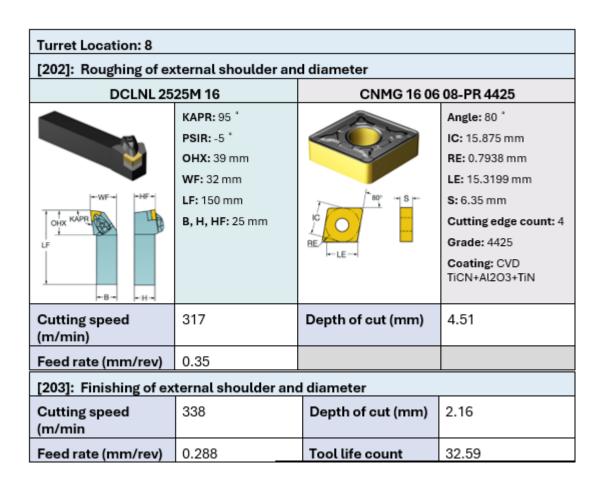
- Final cost: £22.545 each (incl. £6.15 of casting)
- 240 drums was tricky
- 1 CNC → too tight on time
- Aware that it is not most cost-effective solution, but it is complete
- Process could be further optimised for tool life




Imperial College London 28 17/03/2025

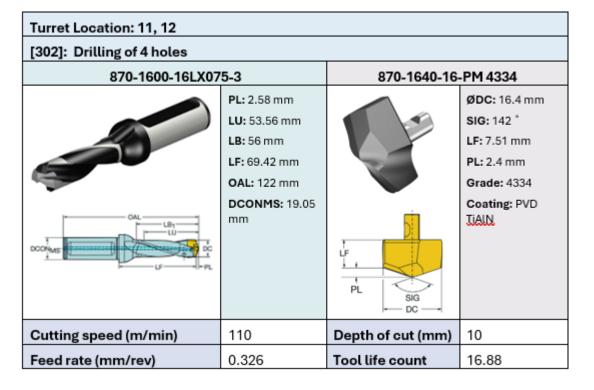

# IMPERIAL

# **Any Questions?**

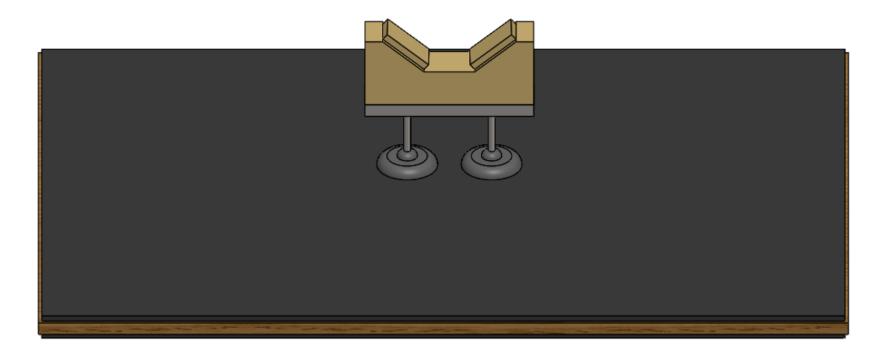

| TOOL                     |                                        | INSERT               |                                              |  |  |  |  |
|--------------------------|----------------------------------------|----------------------|----------------------------------------------|--|--|--|--|
| Turret Location: 2       |                                        |                      |                                              |  |  |  |  |
| [101]: Facing off drui   | n                                      |                      |                                              |  |  |  |  |
| DCLNR 2                  | 525M 16                                | CNMG 16 06           | 6 08-PR 4425                                 |  |  |  |  |
|                          | KAPR: 95°                              |                      | Angle: 80°                                   |  |  |  |  |
|                          | PSIR: -5° OHX: 39 mm WF: 32 mm         |                      | IC: 15.875 mm  RE: 0.7938 mm  LE: 15.3199 mm |  |  |  |  |
| OHX KAPR                 | <b>LF:</b> 150 mm                      | BE -LE-              | <b>S:</b> 6.35mm                             |  |  |  |  |
|                          | B, H, HF: 25 mm                        |                      | Cutting edge count: 4<br>Grade: 4425         |  |  |  |  |
| -8 H-                    |                                        |                      | Coating: CVD<br>TiCN+Al2O3+TiN               |  |  |  |  |
| Cutting speed<br>(m/min  | 338                                    | Depth of cut<br>(mm) | 2                                            |  |  |  |  |
| Feed rate (mm/rev)       | 0.288                                  |                      |                                              |  |  |  |  |
| [102]: Finishing off e   | [102]: Finishing off external shoulder |                      |                                              |  |  |  |  |
| Cutting speed<br>(m/min) | 338                                    | Depth of cut (mm)    | 2                                            |  |  |  |  |
| Feed rate (mm/rev)       | 0.288                                  | Tool life count      | 45.45                                        |  |  |  |  |



| Turret Location: 4       |                                                                                       |                   |                                                                                                                                |  |  |
|--------------------------|---------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| [104]: Finishing of int  | ernal face                                                                            |                   |                                                                                                                                |  |  |
| PSKNR 25                 | 25M 15                                                                                | SNMG 15 06        | 24-PR 4425                                                                                                                     |  |  |
| PR LF                    | KAPR: 75 ° PSIR: 15 ° OHX: 28.9 mm WF: 32 mm LF: 150 mm LPR: 153.8 mm B, H, HF: 25 mm | IC ORE LE         | Angle: 90 ° IC: 15.875 mm RE: 2.3813 mm LE: 13.475 mm S: 6.35 mm Cutting edge count: 8 Grade: 4425 Coating: CVD TiCN+Al2O3+TiN |  |  |
| Cutting speed<br>(m/min) | 283                                                                                   | Depth of cut (mm) | 3                                                                                                                              |  |  |
| Feed rate (mm/rev)       | 0.5                                                                                   | Tool life count   | 154.64                                                                                                                         |  |  |



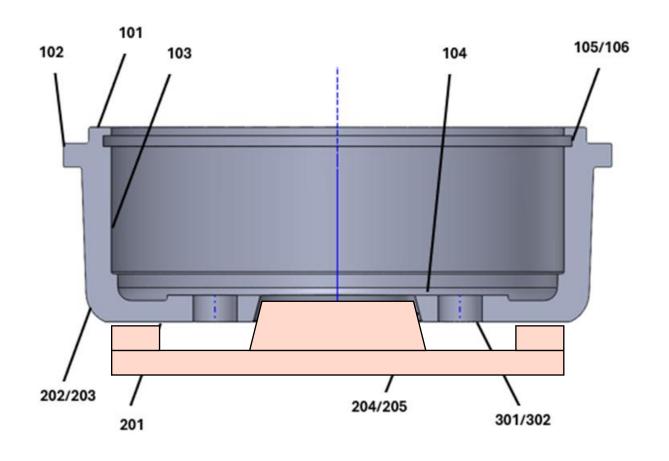

| Turret Location: 7                        |                                                                         |                                            |                                                                                                                         |  |  |  |  |
|-------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [201]: Facing off drui                    | [201]: Facing off drum                                                  |                                            |                                                                                                                         |  |  |  |  |
| DSSNL 20                                  | 20K 12                                                                  | SNMG 12 04                                 | 16-PM 4425                                                                                                              |  |  |  |  |
| -WF <sub>1</sub> -WF <sub>2</sub> -HF-OHX | KAPR: 45 ° PSIR: 45 ° OHX: 27.5 mm WF: 25 mm LF: 125 mm B, H, HF: 20 mm | S S LE | IC: 12.7 mm  RE: 1.5875 mm  LE: 11.1 mm  S: 4.7625 mm  Cutting edge count: 8  Grade: 4425  Coating: CVD  TiCN+Al2O3+TiN |  |  |  |  |
| Cutting speed<br>(m/min)                  | 338                                                                     | Depth of cut (mm)                          | 1                                                                                                                       |  |  |  |  |
| Feed rate (mm/rev)                        | 0.408                                                                   | Tool life count                            | 223.88                                                                                                                  |  |  |  |  |




| Turret Location: 9                  |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |  |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [204]: Roughing of internal bore    |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |  |  |  |  |
| A25T-SSKCL 12 SCMT 12 04 12-PR 4425 |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |  |  |  |  |
| DMN1                                | KAPR: 75 ° PSIR: 15 ° OHX: 100 mm WF: 17 mm LF: 300 mm LPR: 303.05 mm B, H, HF: 23 mm | BE TO TO TO THE | IC: 12.7 mm  RE: 1.1906 mm  LE: 11.5 mm  S: 4.7625 mm  AN: 7 °  Cutting edge count: 4  Grade: 4425  Coating: CVD  TiCN+Al2O3+TiN |  |  |  |  |
| Cutting speed<br>(m/min)            | 314                                                                                   | Depth of cut (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.27                                                                                                                             |  |  |  |  |
| Feed rate (mm/rev)                  | 0.373                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |  |  |  |  |
| [205]: Finishing of in              | ternal bore                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                  |  |  |  |  |
| Cutting speed<br>(m/min             | 320                                                                                   | Depth of cut (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.96                                                                                                                             |  |  |  |  |
| Feed rate (mm/rev)                  | 0.353                                                                                 | Tool life count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92.02                                                                                                                            |  |  |  |  |

| Turret Location: 10      |                 |                   |       |  |  |  |
|--------------------------|-----------------|-------------------|-------|--|--|--|
| [301]: Centre drilling 4 | holes           |                   |       |  |  |  |
| Haas HSS 60° C           | entre Drill     |                   |       |  |  |  |
|                          | ØDMM: 12.5 mm   |                   |       |  |  |  |
|                          | <b>D1:</b> 5 mm |                   |       |  |  |  |
|                          | SIG: 60 °       |                   |       |  |  |  |
|                          | L1: 12.8 mm     |                   |       |  |  |  |
|                          | PL: 6.3 mm      |                   |       |  |  |  |
| 50°                      | L: 63 mm        |                   |       |  |  |  |
| Cutting speed            | 177             | Depth of cut (mm) | 4     |  |  |  |
| (m/min)                  |                 |                   |       |  |  |  |
| Feed rate (mm/rev)       | 0.27            | Tool life count   | 36.76 |  |  |  |




# **Part Handling**Divider Transport



Two vacuum pads are used to transport the drum dividers from one pallet to the next. This is done while the  $13^{th}$  pallet is being machined and does not slow production. The two pads are fitted onto the robotic arm, on the opposite side to the magnetic clamp, and are actuated pneumatically. Assuming a pad diameter of 10mm, a divider weight of 3kg, and a suction force of 0.5atm (50.66kPa), the pads are capable of lifting the divider with a safety factor of  $(3 \times 9.81)/(2 \times \pi(0.005)^2 \times 50.66 \times 10^3) = 3.70$ .

# **Metrology**

# Part holding





# **Costing**Insert Utilisation

|                       | Insert costs |          |                        |                              |                          |                        |                                  |                         |
|-----------------------|--------------|----------|------------------------|------------------------------|--------------------------|------------------------|----------------------------------|-------------------------|
| Insert                | cost/unit    | N. edges | tool life<br>(minutes) | cutting time<br>per part (s) | N. parts can be produced | time based<br>cost (£) | N. parts<br>actually<br>produced | parts based<br>cost (£) |
| CNMG 16 06 08-PR 4425 | £2.17        | 8        | 15.00                  | 19.80                        | 45.00                    | 0.006                  | 24                               | 0.0113                  |
| TR-VB1308-F 4415      | £1.92        | 4        | 15.00                  | 13.50                        | 67.00                    | 0.0071                 | 48                               | 0.01                    |
| SNMG 15 06 24-PR 4425 | £2.17        | 2        | 15.00                  | 5.82                         | 155.00                   | 0.007                  | 144                              | 0.0075                  |
| MAGL 3 250 1025       | £7.65        | 8        | 15.00                  | 60.16                        | 15.00                    | 0.0638                 | 12                               | 0.0797                  |
| SNMG 12 04 16-PM 4425 | £1.37        | 8        | 15.00                  | 4.02                         | 224.00                   | 0.0008                 | 216                              | 0.0008                  |
| CNMG 16 06 08-PR 4425 | £2.17        | 4        | 15.00                  | 27.62                        | 33.00                    | 0.0164                 | 24                               | 0.0226                  |
| SCMT 12 04 12-PR4425  | £1.55        | 4        | 15.00                  | 9.78                         | 92.00                    | 0.0042                 | 72                               | 0.0054                  |
| Centre drill          | £7.00        | 1        | 15.00                  | 10.00                        | 90.00                    | 0.0778                 | 72                               | 0.0972                  |
| 870-1600-16LX075-3    | £273.00      | 1        | 30.00                  | 24.00                        | 75.00                    | 3.64                   | 72                               | 3.7917                  |
| 870-1640-16-PM 4334   | £107.00      | 1        | 30.00                  | 30.00                        | 60.00                    | 1.7833                 | 48                               | 2.2292                  |
|                       |              |          |                        | Total:                       |                          | £5.61                  |                                  | £6.26                   |